Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The oak (Quercus) species of eastern North America are declining in abundance, threatening the many socioecological benefits they provide. We discuss the mechanisms responsible for their loss, many of which are rooted in the prevailing view that oaks are drought tolerant. We then synthesize previously published data to comprehensively review the drought response strategies of eastern US oaks, concluding that whether or not eastern oaks are drought tolerant depends firmly on the metric of success. Although the anisohydric strategy of oaks sometimes confers a gas exchange and growth advantage, it exposes oaks to damaging hydraulic failure, such that oaks are just as or more likely to perish during drought than neighboring species. Consequently, drought frequency is not a strong predictor of historic patterns of oak abundance, although long-term climate and fire frequency are strongly correlated with declines in oak dominance. The oaks’ ability to survive drought may become increasingly difficult in a drier future.more » « less
- 
            Abstract Severe droughts can impart long‐lasting legacies on forest ecosystems through lagged effects that hinder tree recovery and suppress whole‐forest carbon uptake. However, the local climatic and edaphic factors that interact to affect drought legacies in temperate forests remain unknown. Here, we pair a dataset of 143 tree ring chronologies across the mesic forests of the eastern US with historical climate and local soil properties. We found legacy effects to be widespread, the magnitude of which increased markedly in diffuse porous species, sites with deep water tables, and in response to late‐season droughts (August–September). Using an ensemble of downscaled climate projections, we additionally show that our sites are projected to drastically increase in water deficit and drought frequency by the end of the century, potentially increasing the size of legacy effects by up to 65% and acting as a significant process shaping forest composition, carbon uptake and mortality.more » « less
- 
            Abstract AimThe International Tree‐Ring Data Bank (ITRDB) is the most comprehensive database of tree growth. To evaluate its usefulness and improve its accessibility to the broad scientific community, we aimed to: (a) quantify its biases, (b) assess how well it represents global forests, (c) develop tools to identify priority areas to improve its representativity, and d) make available the corrected database. LocationWorldwide. Time periodContributed datasets between 1974 and 2017. Major taxa studiedTrees. MethodsWe identified and corrected formatting issues in all individual datasets of theITRDB. We then calculated the representativity of theITRDBwith respect to species, spatial coverage, climatic regions, elevations, need for data update, climatic limitations on growth, vascular plant diversity, and associated animal diversity. We combined these metrics into a global Priority Sampling Index (PSI) to highlight ways to improveITRDBrepresentativity. ResultsOur refined dataset provides access to a network of >52 million growth data points worldwide. We found, however, that the database is dominated by trees from forests with low diversity, in semi‐arid climates, coniferous species, and in western North America. Conifers represented 81% of theITRDBand even in well‐sampled areas, broadleaves were poorly represented. OurPSIstressed the need to increase the database diversity in terms of broadleaf species and identified poorly represented regions that require scientific attention. Great gains will be made by increasing research and data sharing in African, Asian, and South American forests. Main conclusionsThe extensive data and coverage of theITRDBshow great promise to address macroecological questions. To achieve this, however, we have to overcome the significant gaps in the representativity of theITRDB. A strategic and organized group effort is required, and we hope the tools and data provided here can guide the efforts to improve this invaluable database.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
